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Abstract~The present paper presents a numerical analysis for the edgewise propagation of plastic
instability from the tip of a pre-existing semi-infinite notch in an otherwise unbounded continuum.
The driving force for the shear deformation is provided by an in-plane shear loading pulse. Coupled
thermo-mechanical simulations are carried out under fully plane strain conditions. The simulations
take into account finite deformations, inertia, heat conduction, thermal softening, strain hardening
and strain rate hardening. A combined power law-exponential relation that gives rise to enhanced
strain-rate hardening and ultra-high strain rates is employed. In order to investigate the effects of
material parameters on the initiation and progression of plastic instability, a series of numerical
simulations are conducted by varying the material model parameters that govern material strain
hardening, strain rate sensitivity and thermal softening. Additionally, simulations assuming fully
adiabatic conditions and those incorporating heat conduction are carried out separately.

The results of the simulations confirm the existence of an active plastic zone ahead of the
propagating plastic shear instability. In the active plastic zonc the gradients in flow stress, the plastic
strains, the plastic strain rates and temperature are relatively small in the direction along the
propagation of the shear instability as comparcd to the direction normal to it. The region behind
the propagating instability cxhibits highly localized shear deformation and intense heating. The
intense heating results in thermal softening and hence a decrease in the flow stress in this localized
region. Also, in the localized region just ahead of the notch tip, the equivalent plastic strain rate
after an initial increase is observed to decrease with the applied shearing deformation. The decrease
in both the flow stress and the equivalent plastic strain rate leads to a non-zero monotonically
decreasing dissipation in the vicinity of the notch tip. Moreover, the plastic dissipation reaches a
maximum just behind the tip of the propagating shear instability. Moreover, the results of these
simulations indicate that the initiation and progression of the plastic instability arc significantly
affected by changes in the st rain hardening parameter and the strain rate sensitivity of the material.
Enhanced strain rate sensitivity is observed to drastically retard the initiation and the progression
of plastic instability, whereas the reduced strain hardening results in a considerable decrease in the
time required for the initiation of plastic instability and consequently an increase in the overall
growth of the plastic instability.

In an attempt to characterize the energy absorbed by the material during the development of
the plastic shcaring instability, J-integral values are calculated for the various material models
employcd in the present study. It is observed that the .I-integral is the highest for the material
showing the smallest progression of the plastic instability (material model with enhanced strain rate
sensitivity). and lowest for the material showing the largest extension of plastic instability (material
model with reduced strain hardening coefficient). These observations reiterate the concept of shear
band toughness introduced by Grady (1992). ( 1998 Elsevier Science Ltd. All rights reserved.

I. INTRODUCTION

Plastic shear instability is a strain localization phenomenon that occurs most frequently
during dynamic plastic deformation of a significant number of commercial purity metals,
their alloys and polymers. Such instabilities are precursors to adiabatic shear bands, and
can lead to initiation and propagation of failure. Even for cases in which the localization
of plastic instability does not lead to fracture, the understanding of the formation of
these bands is still important since localized plastic deformation can greatly influence the
subsequent plastic deformation. Thus, in view of their significance as a precursor to fracture
and as a mechanism oflarge plastic deformation, the study of localized plastic deformation
has found a diverse series ofapplications including ultra-high speed machining, high velocity
shaping and forming operations, crash-worthiness of vehicles, and in the development of a
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variety of armor and anti-armor concepts. Comprehensive reviews of work in this area
have been presented by Argon (1973), Bedford et al. (1974), Rogers (1979, 1983), Clifton
(1980), Olson et al. (1981), Hutchinson (1984), Timothy (1987), and Meyers (1994).

Most of the experimental, analytical and numerical studies carried out in the past to
investigate the localization of shearing deformation have focused on understanding the
stability of homogeneous deformations to perturbations in either temperature, stress or
strain in homogeneous isotropic solids (Recht, 1964; Culver, 1973; Staker, 1981; Bai,
1981; Merzer, 1982; Wright, 1987; Duffy and Chi, 1992; Needleman, 1989; Nemat­
Nasseer, 1992 and Zurek, 1994). The general consensus emerging from these studies is that
the primary mechanism for localization is a thermo-mechanical one, through which the
plastic instability is determined by the net interaction of softening and hardening features
of the material behavior. High nominal strain-rates give rise to favorable conditions for the
localization of adiabatic deformation by allowing non-uniform heating and non-uniform
straining to occur. Whether or not these mechanisms are sufficient in the development of
the plastic instability also depends upon the strain-rate sensitivity, heat conduction, inertia,
the strength of the initial homogeneities and the imposed boundary conditions.

Unfortunately, the assumptions under which most of the aforementioned plastic local­
ization studies have been carried out do not depict the formation of these bands with
sufficient realism. In these studies the localized bands are considered as an one-dimensional
entity with their initiation and growth assumed to occur instantaneously over an entire
planar cross-section. In reality, these bands originate within a localized region and have
well defined fronts which propagate with finite speeds along the plane of shear deformation
much like propagating Mode-II cracks (Marchand and Duffy, 1988; Meyers, 1994). Thus,
the multi-dimensional nature of these problems assigns them attributes that are normally
not present in one-dimensional plastic instability localization models. These characteristics
include a dynamically propagating tip, and thus a strong dependence of thermal and
mechanical fields on the speed of propagation.

Previous analyses of shear band localization from pre-existing geometric inhom­
ogeneities has been carried out by Marchand and Duffy (1988) in several metal alloys.
Kuriyama and Meyers (1986) in HY-TUF steel, Kalthoff and Winkler (1987) in high
strength maraging steels, Ravi-Chandar (1995) in polycarbonate, Mason et at. (1994) and
Zhou et al. (l996a, b) in C-300 steel and Ti-6AI-4V alloy. Marchand and Duffy (1988)
observed the non-uniform initiation and propagation of shear bands in thin-walled tubular
specimens subjected to dynamic torsional loading. They reported an estimated shear band
tip speed of 500 m/s. Kuriyama and Meyers (1986), employing an adiabatic constitutive
relations for material response, investigated the critical conditions existing at the shear
band tip for the onset and propagation of the shear localization. However, their highly
simplified numerical analysis neglected the effects of inertia, thermal conductivity and the
strain rate sensitivity of the material, all of which are known to have a profound effect on
the initiation and propagation of shear bands in a material. Kalthoff and Winkler (1987),
using the experimental method of caustics, developed an experimental technique for sub­
jecting edge cracks in plate specimens to high rates of shear loading (near Mode II
conditions). In their experiments on high strength maraging steels they observed that at
low impact velocities the failure involved shear localization leading to ductile fracture
whereas at higher impact velocities failure occurs by ductile fracture. The same fracture
mode transition was observed by Ravi-Chandar (1995) in polycarbonate using a loading
arrangement similar to that employed by Kalthoff and Winkler (1987), but with a single
edge-cracked specimen. Employing a similar specimen and loading configuration, Mason
et al. (1994) used the method of coherent gradient sensing (CaS) to record the deformation
fields around a propagating adiabatic shear band emanating from a pre-machined notch in
C-300 steel. They observed that during the early times after impact, the resulting fringe
pattern surrounding the shear band resembles the deformation characteristics of a mode II
Dugdale plastic zone under small-scale yielding conditions. Also, using a similar experi­
mental geometry, Zhou et al. (l996a) measured the real-time temperature history along
and perpendicular to the shear band path in C-300 steel specimens by means of high speed
infrared detector system. They reported temperatures as high as 1400'C (90% of the melting
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point of C-300 steel) and shear band speeds of approximately 1200 mls (40% of the shear
wave speed in C-300). Recently, Grady (1992, 1994) has presented a numerical analysis
focusing on energy dissipation during dynamic adiabatic shear banding process. The analysis
sheds light on the properties of the shear band process zone including its width and length
and the shear displacement accumulated within this region. The energy dissipated within
the shear band process zone is also obtained from their model and the concept of shear
band toughness is introduced. Wright and Walters (1994) have presented a simple
mathematical model for examining the edgewise propagation of a shear band occupying a
half-plane of material. Using a rigid-plastic material model with linear thermal softening
and power-law rate hardening but without work-hardening they obtained a two parameter
solution for the mechanical and thermal fields near the tip of a propagating antiplane shear
band.

In the present study, a finite element approach is employed to examine the initiation
and edgewise propagation of plastic instability in 4340 VAR steel from the tip of a pre­
existing semi-infinite notch in an otherwise unbounded continuum. The driving force for
the shear deformation at the notch tip is provided by an in-plane shear loading pulse. The
objective of the study is to, (a) examine the deformation and thermal fields during the
initiation and propagation of plastic instability from a crack tip under fully plane strain
loading conditions, and, (b) understand the role of the various material parameters such
as strain hardening coefficient, strain rate sensitivity, thermal softening and thermal con­
ductivity on the initiation and propagation of the plastic instability. The particular bound­
ary problem analyzed is similar to the one used by Ravichandran and Clifton (1989),
Prakash and Clifton (1992), and Lee and Prakash (1995) to investigate the plane-strain
dynamic fracture under plane wave tensile loading, with the exception that an in-plane
shear pulse is employed instead of the normal tensile pulse. The finite element formulation
employed takes full account of the effects of finite geometry changes, the material inertia,
the effect of the material strain hardening, strain-rate sensitivity and thermal softening. The
material is characterized as an isotropically hardening elastic-viscoplastic von Mises solid.
In order to investigate the effects of material parameters on the initiation and progression
of plastic instability numerical studies are conducted by varying the strain hardening, the
strain rate, the strain rate sensitivity and the thermal softening parameters. Moreover, a
combined power-law and exponential plastic strain-rate relation, that gives rise to enhanced
strain-rate hardening at ultra-high strain rates, is employed (Clifton, 1990). To investigate
the effects of heat conduction on the initiation and propagation of the plastic instability,
finite element simulations assuming fully adiabatic conditions and those incorporating heat
conduction are carried out separately. The study of the thermal process is important since
adiabatic shear banding is primarily driven by thermal softening due to heat generated by
plastic flow.

2. PROBLEM FORMULATION

The analysis is based on a convected Lagrangian formulation of field equations with
the initial undeformed body configuration as the reference. Convected coordinates l are
introduced which serve as particle labels. Relative to a fixed Cartesian frame, the position
of a material point in the reference configuration is given by X{J/). The corresponding
material particle in the current configuration is located by a position vector xU'!). The base
vectors for the reference and the current configuration of the body are denoted by g, and
g" respectively, with

ax
gi = ~. and

cy'
(I)

The reciprocal base vectors can be obtained from their respective base vectors as gi = gi/g
.. .... j

and g' = jJ"g;, where g'l and .tF are, respectively, the inverse of the metric tensors gif = g,' gi
and [iii = gi' gi'
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This displacement vector, D, and the deformation gradient tensor F, are defined as

ox
u = x - X and F = oX' (2)

Within the context of the convective coordinate formulation, it follows that the
deformed base vectors g" are simply the push forward to the reference base vectors gi' i.e.

(3)

A similar result is obtained for the contravariant base vectors

(4)

For elastic-plastic deformation, the basic kinematic assumption employed is the multi­
plicative decomposition of the deformation gradient, Lee (1969)

F = Fe. FP, (5)

where Fe represents the deformation gradient tensor associated with elastic deformation
and rigid body rotation, and FP is the deformation gradient tensor associated with plastic
flow.

The spatial velocity gradient tensor is given by L = F' F - I. Using the kinematic
decomposition, i.e. (5), in the definition of l, yields

(6)

where 0 denotes non-objective material time derivative and () -I denotes tensor inverse.
The rate of deformation and spin tensors are defined as the symmetric and skew­

symmetric parts of L, i.e., D = sym Land W = skew L. The elastic and plastic parts of D
and Ware identified as

De +we = Fe. Fe-I,

DP +WP = Fe . FP . p- 1 • Fe-I (7)

where De, DP and we, WP are the symmetric and skew-symmetric parts of V and LP,
respectively.

The momentum balance for dynamic deformation of solids, can be written either in
the current configuration in terms of the symmetric Cauchy stress tensor, (1, or in the
reference configuration in terms of the symmetric nominal stress tensor (second Piola­
Kirchhoff stress), f. These stress measures are related to the force, df, transmitted across a
material element by

df = ii' (1 dS = F' n . f dS. (8)

Here, dS and ii denote the area and orientation of a material element in the current
configuration that had a material area dS and an orientation n in the reference configuration.

The Kirchhoff stress is defined by. = det(F)(1. Using Nanson's relation in (8), yields
the relationship between the stress measures, f and.

(9)

The dynamic principle of virtual work can be written in the integral form as
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(10)

where V, S, and Po are the volume, surface area and mass density, respectively, of the body
in the reference configuration. In writing (10) we have used the fact that the components
of any spatial tensor on the convected (current) base vectors coincide with the components
of the pull-back of that tensor on the reference base vectors. Thus, the components of the
Kirchhoff stress on the current base vectors coincide with the components of the symmetric
nominal stress tensor on the reference base vectors, i.e., gi. -r' g = gi. f· g.

The traction vector component Ii on a surface with unit normal vector component nJ

in the reference configuration is given by

(11)

The Lagrangian strain tensor in the reference configuration is

(12)

where (L represents the covariant partial differentiation in the reference frame.
At this point, we will also define quantities f* and Ee which will be useful in the

subsequent discussions

f* = Fc-I . -r' FC- T Ee = ·~(FeT •FC - I), 2 • (13)

f* and Ee can be thought of as the stress and elastic strain measures, respectively, on the
intermediate configuration.

With body forces and external heat energy source being absent, the balance of energy
can be expressed as integrals over the reference configuration

(14)

where e is the specific internal energy, dldt is the material time derivative, J is the Jacobian of
the deformation, and ij is heat-flux vector normal to the surface in the current configuration.

Then, noting

Equation (14) can be expressed as

r poe d V = r -r: D d V - f Jo' F- 1
• ij dS.Jv .v s

(15)

(16)

The specific internal energy can be expressed as e = e(Ee, YJ ha), where YJ is the specific
energy entropy, and h, are a set of kinematic variables describing the internal arrangement
of the material undergoing plastic deformation.

For the problem treated here, it will prove convenient to rewrite the internal energy in
terms of the Gibb's free energy, lj;, as
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_ 1 _
e = l/f(T*, T, h,) +'1T+ -T*: r,

Po
(17)

where T is the absolute temperature.
Using (17) in (16) and rearranging terms, yields

Iv [(po ::* +E
e
): T*+ (te

:f*-~: De) +Po (~~ +ry) t

+(po-~l/f h,-(l-X)~:DP)+poTr,JdV= f X~:DPdV-f In'F-1'ljdS, (18)
ah, V s

where X represents the fraction of plastic work rate converted to heat and (1- X) is the
fraction of plastic work rate stored as residual strain energy in the material. In the present
analysis X is taken to have a value of 0.9, which is typical of most metals (Taylor and
Quinney, 1934). For all arbitrary values ofT* and tin (18), we can identify the following
relations

ol/f
Y/ = -aT

al/f .
(1 - X)~ : DP = Po oh, hx

~: De = t e : f*

such that (18) reduces to

r PoTr,dV= r X~:DPdV-f In'F- ' 'qdS.
Jv Jv s

(19)

(20)

In general, the constitutive relation for heat flux is formulated on the intermediate
configuration, i.e.,

- TaTq* = -k*' Fe _,gl,
ay'

(21 )

where q* and k* represent the heat flux vector and thermal conductivity tensor on the
intermediate configuration. Formulation of the constitutive relation on the intermediate
configuration is necessary to insure that the principle of material frame indifference is not
violated. Restricting (21) in cases where thermal conductivity can be assumed to be
isotropic, i.e. k* = kI, the push forward of the heat flux vector in the current configuration
yields

(22)

Restricting attention to cases in which the elastic strains are small in comparison to the
plastic strains, Fe can be approximated as
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Fe = Q'(I+I') whereQ-l = QT,

Y = yT and 111'\1« I.
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(23)

Thus for isotropic constituents with II y II « I, the heat flux vector in the current configuration
becomes

aT
q = -k-g'.

oy'
(24)

Substituting (24) in (20) yields the energy balance equation in the reference configuration

r Po TljdV = r xt: I)Pdv+f JkVo '(Foo l ·F- T
• '11 0 T) dV,

Jv Jv v
(25)

where the gradient operator in the reference configuration is denoted by Vo = gK(O/oyK).
Using the expression for specific entropy from (19)2 in (25), the balance of energy

takes the form

+ LJkVo'(F I·F-T ·VoT)dV. (26)

The second and third terms on the LHS of (26) represent thermo-elastic coupling
with both the recoverable and residual elastic deformation. However, in metals elastic
deformation is typically accompanied by only small changes in temperature. In view of
this, thermo-elastic coupling is neglected in the present analysis. We also assume that the
heat capacity at constant stress, Ct. = - T a21jJ/cT2, can be approximated by the specific
heat at constant pressure cpo Thus, for the problem considered here, the coupled heat
equation takes the simplified form

2.1. Stress rate-strain rate relations
Differentiating (19) 1 with respect to time yields

(27)

• e E;2ljJ
E = - Po af* 81'* : (28)

or

. :. aEC I . aEe I .EC = M :T* + :;_0 T+ -~_. h"
(;T '1",11, oh, T".r

(29)

where M = - Po 021jJ/af* af* is the elastic compliance. The third term on the RHS of (29)
is neglected for the problem considered here since we assume that the thermo-elastic
properties of the material are largely independent of plastic deformation. Furthermore, we
can approximate aEe /ilTlt,./,o by a first order expansion about f* = 0 such that
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cEe I i3Ee I aM- = - + --: T*+h.o.t.
aT '-r'/ aT t'~Oh aT

,1;( 'a

(30)

The term aEe /i3Tlt.~o h represents the thermal expansion tensor, which we will designate
as IX. Neglecting the eff~cts of temperature on the elastic compliance the expression for the
elastic strain rate, (29), takes the form

(31) can be inverted to yield

. ... .
Ee = M:T*+IXT,

... ..
T* = :e:(Ee-IXT),

(31)

(32)

where the elastic Moduli are given by :e = M- 1
•

Using (32), and assuming the existence of a strain energy density function for elastic
response, the Jaumann rate of Kirchhoff stress, i, based on the elastic spin rate we, can be
written as (Needleman, 1985)

(33)

where i is the non-objective material time derivative of the Kirchhoff stress and :ee is the
elastic moduli convected with the elastic deformation gradient, i.e. :ee=Fe·Fe.:e.
Fe

T
• Fe

T
• The relation (33) is valid for finite as well as infinitesimal elastic deformations. In

applications to metal plasticity, the elastic strains generally remain small as compared to
the plastic strains. This implies that the stress magnitude is small compared to the magnitude
ofany elastic moduli and the last two terms on the RHS of (33) are negligible in comparison
with the first term. Moreover constitutive models for plastic spin, WP, have been considered
by several investigators (for example, see Dafalias, 1985). Canova et al. (1984) have shown
that WP is zero for single crystals with very strong rate sensitivity. In view of the lack of
well-accepted models for the plastic spin for polycrystaline metals, WP is taken to be zero
for the analysis used here. For plasticity theories with WP = 0 the elastic spin rate is identical
to the total spin rate. Thus, the elastic Jaumann rate can be replaced by the ordinary
Jaumann derivative based on the total material spin W.

The rate of deformation can be expressed as the sum of an elastic part and a part due
to plastic straining. Hence, D = De+DP. Then, in (33), De can be replaced by D - DP and
we by W (since WP = 0), which together with the aforementioned approximations yields

(34)

When the temperature dependence of the elastic moduli is ignored, the tangent moduli for
the isotropic elastic response can be written as

(35)

where, E is Young's modulus and v is Poisson's ratio.
For updating the Kirchhoff stresses we need the convected time-derivative of Kirchhoff

stresses on the current base vectors. Using an analysis paralleling (Needleman, 1985), the
convected derivative of the contravariant components of the Kirchhoff stress can be ex­
pressed as
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t C = C:D-P,
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(36)

where C is a tensor of rank four and P = !£e :(DP+ott). On the current base vectors
(36) can be written as

(tC )!) = CiJklEkl - pli. (37)

The Lagrangian strain-rate appears in eqn (37) via the identity Eij = gi' D' gj, and its
components on the reference base vectors are given by

(38)

The components of the four tensor C on the current base vectors can be expressed as

(39)

The material is characterized as an isotropically hardening viscoplastic solid for which DP
can be expressed using J2 flow theory as

Jr'
DP = ep where p = 2i' (40)

In (40) e is the equivalent plastic strain rate function; the deviatoric stress r' and the
equivalent flow stress if are given by

, 1(1)1 d -2 3,.,'t' = r -:3 r : an (J =:zt'. 't' . (41)

The material properties used in the present simulations are representative of hardened
AISI 4340 VAR steel (200°C temper) (Lee and Prakash, 1996). The plastic strain rate, e, is
taken to be of the form

where

~ el 82
£=--

e\ +82'
(42)

and

. . [ag(~, T)J
£2 = £mexp - _

(J
(43)

(44)

Here, ~ = S~ edt is the equivalent plastic strain, em is a reference strain rate, m and aare the
rate sensitivity parameters, respectively, (Jo is a reference stress, £0 is a reference strain, N is
the strain hardening exponent, To is a reference temperature, and fJ and k are the thermal
softening parameters. The function gee, T) represents the stress-strain relation at a quasi­
static strain rate of eo and at temperature T.

Equation (42), provides a smooth transition between the measured response
e= e\(If, ~, T) at strain rates less than 103 s-I, and the limiting behavior e= 82(If,~, T) at
strain rates greater than, say, 105

S-I. The model includes a limiting strain rate em which is
not obtainable from experiments; a value of 5 x 108 S-lor greater is chosen, primarily for
the numerical purpose of avoiding the need for unreasonably small steps at early times
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Fig. I. Elastic--viscoplastic response of 4340 VAR steel employed in the numerical simulations. (a)
Effect of equivalent plastic strain rate on the flow stress. (b) Effect of strain hardening and tem­

perature on flow stress.

when the shear stresses are large. These stresses are relaxed in a few nanoseconds. The
uncertainty in the response of the material at small strains and at large strain rates is
unavoidable at the present because of the lack of experimental data in this regime. This
uncertainty may have an effect on the calculated initial impact response of the material and
is not expected to playa significant role in the evolution of plastic instability and the
formation of shear bands since these events occur at much later times.

The material response of 4340 VAR steel is shown in Fig. I. along with the plastic
strain rate and the temperature dependence of the flow stress. The material parameters used
in the model are listed in Table I. To characterize the thermal softening behavior. the
parameters f3 and k are chosen such that the stress-carrying capacity ofeach material almost
vanishes when the temperature reaches more than IOOOuC.
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Table I. Physical properties and material
parameters used to describe the model for

AISI 4340 VAR steel

E = 202 OPa, an = 1700 MPa
m = 100.0, fJ = 4.75
c" = 465 J/(Kg K), C( = 1.0 X 105 UK
a = 10.0,1:1) = 1.0 x 10- 4 s'
t", = 5.0 x 10" s"', Eo = 0.01
k = 100.0 W/m K, TI) = 293 K
h" = 0.13, N = 0.1, v = 0.3
Density = 7600 Kg/m J

Longitudinal wave speed = 5983 mls
Shear wave speed = 3154 m/s
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3. FINITE ELEMENT IMPLEMENTATION

As discussed by Budiansky (1969), the principle of virtual work (10) can be used as
the variational principle for a solid continuum undergoing arbitrarily large displacements
and deformations. Moreover, the variational equation governing the thermo-mechanical
energy balance can be obtained from the balance of energy, (27), as

JpOCptbTdV = LX't': DPbTd V - JJk(F I. F- T
• V'o)(V'o 'bT) dV

+ IJkN'{(Fl'F··r·V'oT)}bTdS (45)

When the finite-element approximations for the displacement and temperature fields
are substituted into (10) and (45), the resulting equations take the form

aTc _ = -KT+H,
ct

(46)

(47)

where U is the vector of nodal displacements, T is the vector of nodal temperatures, M, C,
K, are, respectively, the mass, heat capacitance, and heat conductance matrices, and Rand
H are the mechanical and thermal force vectors, A lumped mass matrix is used in (46)
instead of the consistent mass matrix; the lumped mass matrix has been found preferable
for explicit time integration procedures from the point of view of computational efficiency
and accuracy (Krieg and Key, 1973). Additionally, a lumped heat capacitance matrix is
used in the (47).

An explicit time integration scheme based on the Newmark fl-method, with fl = 0, and
" = 0.5 (Belytschko et al., 1976) is used to integrate the equations of motion to obtain the
nodal velocities and nodal displacements via

(48)

(49)



3766 y. Lee and V. Prakash

(50)

where () -I denotes the matrix inverse.
The plastic dissipation rate, 't': DP, is calculated and its contribution to the thermal

force vector, un, is determined. The nodal temperature at tn+ 1 are obtained via

and

oT"+!
--= C-!( -K"T"+H")ot ' (51)

(52)

The rate tangent modulus expansion method (Peirce et al., 1984) is used to update the
contravariant components of the convected Kirchhoff stress tensor, i.e.

(53)

Following this model, the equivalent plastic strain is expressed as a linear combination of
its values at t" and tn + I,

(54)

with 8"+ I, approximated by a first order Taylor series expansion in 0-, eand T as

Using J2 flow theory, (j can be expressed as

(j = p:"Pe: D-3G8.

Substituting (55) and (56) into (54) gives the equivalent plastic strain rate as

... 8" '1 ( .m/oT)
1>=1+'+(l+()H p:"Pe:D+Tm/oo-'

where

m m/ot
, = e~t" oa H, and H = 3G- m/aa'

(55)

(56)

(57)

(58)

The derivatives used in (57) and (58) can be obtained from eqns (42)-(44).
The Jaumann rate of Kirchhoff stress is obtained by using eqns (40), (41) and (57) in

(34) as

~ - [.:Ee __,_ (.:E
e
:p) ®(.:E

e
:P)]. D- _1_ [... i m/oT 'J 3G .

- 1+' H . 1+, 1>+ H m/oa T a 't'-iXT(2G+3..1.)I.

(59)
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The specific problem considered here is plane strain, in-plane shear loading of a
rectangular pre-notched specimen, as shown in Fig. 2(a). A Cartesian coordinate system
with the origin placed at the notch tip is used as reference. The in-plane shear loading is
aligned with positive l direction with the /~l plane being the plane of deformation. The
initial and boundary conditions can be written as

[1 = 0 p =0 oni = -WI. ,

p =0, p =0 oni = W2

II = 0, .F =0 ony2 = 0 and i <0

II = 0, I 2 = 0 ony2 = -b2

u l = 1V(t)dt P = 0 ony2 = bl'

The function V(t) in (60) is taken to increase smoothly from time t = 0 according to

(60)

{
VoltV(t) = . flse,

Va,

for t :::;; t",e'

for trise < t :::;; t fall

(61)

with Va being the prescribed shear velocity. The duration of the shear pulse is taken to be
1 J1.s with rise time and fall time being equal to 100 ns. A Va = 35 mls is used in (61) for all
finite element simulations described in the present paper. This magnitude of Va assures that
the stresses in the bulk of the specimen remain below the Hugoniot Elastic Limit (HEL) of
the particular 4340 VAR steel being investigated and all inelasticity is confined to a small
region ahead of the notch. The specimen dimensions are taken as WI = W2 = 16.0 mm and
bl = b2 = 3.5 mm. These dimensions assure that no wave reflections from the specimen
boundaries arrive at the central part of the specimen, i.e. the region in the vicinity of the
notch tip, for the entire duration of the loading pulse.

The finite element mesh used for the computational experiments is shown in Fig. 2(b).
Figure 2(c) shows the mesh in the vicinity of the notch tip. The initial notch tip is semi­
circular with a diameter of 10 J1.m. The region ahead of the notch consists of a uniform
mesh with 24 quadrilaterals in the i direction and six quadrilaterals placed symmetrically
about the i axis and parallel to the l direction. Each quadrilateral element in the uniform
mesh zone has a dimension of 10 x 10 J1.m. The entire finite-element mesh consists of 2430
quadrilateral elements with 9980 degrees of freedom.

The finite element discretization is based on linear displacement triangular elements
that are arranged in a "crossed-triangle" quadrilateral pattern. In these constant strain
triangular sub-elements the displacements and temperature are taken to vary linearly over
the triangular elements. Nagtegaal et al. (1974) have shown that an element of this type
can accommodate isochoric deformations. This is of significance since plastic strain is
volume preserving, so that the total deformation at large strains is nearly isochoric. Another
reason for using the crossed-triangle elements in the present context stems from the need
to resolve localized shear bands. As discussed by Tvergaard et al. (1981), a mesh composed
of crossed triangles can resolve narrow shear bands in four dimensions-parallel with
either the sides or the diagonals of the element. In presenting computational results, the
quadrilateral is regarded as the basic element, and when reporting values of field quantities
the average value of the four triangles is associated with the centroid of the quadrilateral.

4. RESULTS AND DISCUSSION

In the present paper results of computational experiments, based on five different
material models, are presented. As a base material the material parameters corresponding
to 4340 VAR steel are chosen. The parameters for the second material [Material Model
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Fig. 3. Material models employed in the numerical simulations. For Material Model (A), strain rate
sensitivity parameter m is changed from 100-10. For Material Model (B), strain hardening coefficient
n is changed from 0.1-0.025. For Material Model (Cl, thermal softening parameter fJ is changed
from 4.75-5.92. (a) Effect of equivalent plastic strain rate on flow stress. (b) Strain hardening

characteristics. (c) Thermal softening characteristics.

(A)] are the same as those of the base material except that the material strain-rate sensitivity
parameter m is changed from 100-10. This value of m provides enhanced material strain
rate sensitivity and its effect on the flow stress is shown in Fig. 3(a). For the third material
[Material Model (B)], the strain hardening exponent is changed from O. I to 0.025. Decreas­
ing the strain hardening exponent results in a near perfectly plastic material response, as
shown in Fig. 3(b). For the fourth material [Material Model (C)], an enhanced thermal
softening material response is employed to investigate the sensitivity of shearing defor­
mation to accelerated decrease in flow stress due to temperature rise. This is achieved by
increasing the magnitude of the parameter fJ in (44) from 4.75 to 5.92. The corresponding
variation of flow stress with temperature is shown in Fig. 3(c). Also, results are presented
for the 4340 VAR steel with negligible heat conduction to investigate the effects ofadiabatic
conditions on the evolution of plastic instability.

4. I. Initiation and propagation ofplastic instability

(a) 4340 VAR steel. Figure 4(a·d) represent contour plots summarizing the mechanical
and thermal fields in the vicinity of the region undergoing plastic deformation, obtained
900 ns after the arrival of the shear loading pulse at the notch plane. The applied loading
corresponds to a purely tangential particle velocity history with a shear stress amplitude of
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850 MPa and a duration of 1000 flS. These fan shaped two-dimensional local mechanical
and thermal fields govern the initiation and progression of the plastic instability under the
applied loading. The solid horizontal line emanating from the origin represents the distance
plastic instability has extended to from its initial position during the 900 ns time interval.
The plots indicate that the gradients in flow stress, the equivalent plastic strain rate, the
plastic strain and temperature increase as we move towards the notch tip along the /
direction and also as we approach the notch plane along the l direction. This distribution
of the mechanical and the thermal fields is consistent with the localization of shearing
deformation along the notch plane.

Also, the initiation and propagation of plastic instability depends on the intensity of
shear stresses, a12, in the vicinity of the region undergoing plastic localization. The intensity
of the shear stresses affects the rate of plastic deformation of material elements in the
process zone and reflects the material resistance to the propagation of the plastic instability.
Figure 5(a-e) shows a sequence of the shear stress distributions in the region directly ahead
of the notch tip at three different time intervals after the arrival of the shear loading pulse
at the notch plane, i.e. at t = 200, 500 and 900 ns. From these plots it is observed that
during the initiation and propagation of the plastic shear instability, the shear stress
distribution is approximately symmetric with respect to the notch plane. The shear stresses
are highest along the centerline (notch plane) and decrease rapidly as we move away in a
direction perpendicular to the notch plane. Also, Fig. 5(b) and (c) indicate that the shear
stresses increase rapidly as we move away from the tip of the localized region in the positive
Yl direction along the notch plane, reaches a maximum and then decreases to an almost
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uniform shear stress region. The size of this uniform shear stress region is relatively small
initially. But, as the plastic instability propagates the size of this region increases, reaching
a maximum at t = 900 ns. These general features are consistent with the observations of
Zhou et al. (l996b) and the concept of an active shear process zone at the tip of the
propagating shear band proposed by Grady (1992,1994).

The deformation and temperature fields for the case of propagating plastic shear
instabilities are different from one-dimensional localized bands in that they are non-uniform
along as well as across the localized regions. The mechanical and thermal fields, in a
direction along and perpendicular to the notch plane are shown in Figs 6(a-d) and 7(a-d).
The initiation and the subsequent progression of plastic instability is best understood from
Fig. 6(a), which shows the variation of the flow stress as a function of distance from the
notch tip, at various time intervals. The plot is obtained from Fig. 4(a) by using the line
extraction option available in the commercial plotting package TECPLOT " . The ordinate
of Fig. 6(a) is normalized with respect to the initial flow stress, (Jo, for 4340 VAR steel
(Table I). Upon the arrival of the incident shear pulse at the notch plane, the flow stress of
the material ahead of the notch tip increases steadily for approximately 250 ns due to strain
hardening and the strain rate sensitivity of 4340 VAR steel. At the same time. due to
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thermo-mechanical coupling and the relatively short time available for heat conduction,
the temperature at these material points starts to increase rapidly. The resulting thermal
softening plays an important role in the evolution of the plastic instability. When the
elevation of flow stress due to strain hardening and the rate sensitivity of the material is
offset by the effect of thennal softening on the flow stress. the condition of plastic instability
is initiated. This information is obtained from Fig 6(a) by identifying, for a particular
material clement, the time at which the rate of increase of flow stress becomes negative. It
should be noted that although this criterion is not a sut1icient condition for shear band
localization (Clifton ct al., ]984), it should still be acceptable for the purposes of the present
analysis in identifying the initiation and propagation of plastic instability. Figure 7(a)
shows the evolution of the now stress as a function of distance along the V" coordinate axis
and at a distance \'1 = 25 )/m ahead of the notch tip. The /low stress increases to a level of
approximately 1.8 times its initial level during the initial 250 ns, with maximum occurring
along the notch plane, i.e, .l" ccc O. and then decreases as the effects of thermal softening
start to dominate the effects of strain hardening and rate sensitivity of 4340 VAR steel.

Figures 6(b) and 7(b) show the evolution of the equivalent plastic strain-rate as a
function of distance ahead of notch tip. For material elements in the immediate vicinity of
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the notch tip, during the initial 250 ns, the equivalent plastic strain rate increases rapidly
and attains a maximum of approximately 1.1 x 106 S~ 1. This maximum in the equivalent
plastic strain rate occurs before the initiation of the plastic instability, and then it actually
decreases as the localization of the plastic instability occurs. Figure 8(a) and (b) depict the
total equivalent strain rate (defined by J2/30: 0) as a function of distance / at i = 0,
and as a function of i at / = 25 /lm, respectively, for 4340 VAR steel. The total equivalent
strain rate is observed to increase continuously with the applied shearing deformation,
reaching a maximum of approximately 2 x 106 S~ I at t = 900 ns in the vicinity of the notch
lip. Figure 8(c) and d show the corresponding variation of the equivalent thermal strain
rate (defined by 2/30T: OT with OT = !XiI) as a function of distance y' at i = 0 and y:'
at i = 25 /lm, respectively. Due to the relatively small magnitude of the equivalent thermal
strain rate as compared to the equivalent plastic strain rate (shown in Figs 6(b) and 7(b».
the equivalent thermal strain rate has negligible effect on the total equivalent strain rate.
Figure 8(e) and (f) show the variation of the equivalent elastic strain rate as a function of
position yl at y2 = 0, and i at yl = 25 /lm, respectively. These curves are obtained by
subtracting the sum of the equivalent plastic strain rate and the equivalent thermal strain
rate from the total equivalent strain rate. It is clearly observed from Fig. 8(e) and (f) that
the equivalent elastic strain rate, after an initial decrease (from t = 100--200 ns), increases
continuously with deformation leading to the dominance of the elastic strain rate in the
region. This is in contrast to the previous shear band localization studies employing a power
law strain-rate hardening material response in which the equivalent plastic strain rates have
been reported to dominate the total equivalent strain-rate during the entire duration of the
loading.

Figures 6(c), (d), 7(c) and (d) show the evolution of the equivalent plastic strain and
temperature ahead of the notch tip as a function of time. Both the equivalent plastic strain
and temperature increase monotonically with time at material points on either side (ahead
and behind) of the plastic instability front. The continued plastic deformation/dissipation
behind the tip of the plastically localized band is in contrast to the propagation of cracks
where the crack faces separate and no further dissipation and deformation occurs behind
the crack tip. The maximum plastic strain and the maximum temperature attained is as
high as 0.8 and 37Y'C, respectively, in the immediate vicinity of the notch tip during the
900 ns time period. These higher values for strains and temperature are partly due to the
longer durations of localized deformations present there. Also, from Fig. 7(c) and (d) it is
observed that the plastic strains and temperature tends to localize in a narrow band ahead
of the notch tip.

(b) 4340 VAR steel (adiabatic case). Figure 9(a--d) represent contour plots depicting
the local mechanical and the thermal fields for 4340 VAR steel undergoing adiabatic
deformation at time t = 900 ns. The solid horizontal line emanating from the origin
represents the distance the plastic instability has extended from the notch tip during the
900 ns time interval. Figure lO(a-d) show the flow stress, the equivalent plastic strain-rate,
the equivalent plastic strain, and temperature as a function of distance / at y2 = O. From
these plots it can be seen that the levels of flow stress (Fig. 9(a») obtained for the adiabatic
case are only slightly lower than those obtained for the heat conduction case. Also, the
contours representing the plastic strain rate (Fig. 9(b», the equivalent plastic strain (Fig.
9(c) and temperature (Fig. 9(d» for the adiabatic case are quite similar to those obtained
for the heat conduction case. The propagation characteristics for plastic instability are also
quite similar to the heat conduction case with the extension of the plastic instability being
slightly greater for the adiabatic case. The similarity between the results for the heat
conduction case and the adiabatic case is expected since the duration of these computational
experiments is less than one microsecond allowing insufficient time for diffusion of heat
away from the notch plane.

(c) Eflect of strain rate sensitivity [Material Model (A)]. Figure II (a--d) represent
contour plots showing the local mechanical and the thermal fields for Material Model (A)
in the vicinity of the notch tip at t = 900 ns. The solid horizontal line emanating from the
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origin represents the distance plastic instability has extended from the notch tip during the
duration of the shear loading pulse. Figure 12(a~d) show the flow stress, equivalent plastic
strain-rate, equivalent plastic strain, and temperature as a function of distance ahead of the
notch tip plotted on the undeformed configuration. Upon the arrival of the incident shear
pulse the flow stress level ahead of the notch tip is increased significantly to 8ao. This is
primarily due to the strong material rate sensitivity inherent in Material Model (A). The
magnitudes and the spatial distribution of the equivalent plastic strain rate, the equivalent
plastic strain and temperatures are all drastically reduced as compared to the 4340 VAR
steel case. These mechanical and thermal fields have a considerable effect on the localization
of plastic instability. The initiation of the plastic instability is significantly delayed and the
total extension of the plastic instability is only 16 ,urn.

(d) Effect o(straining hardening coefficient [Material Model (B)]. Figure 13(a~d) show
the contour plots summarizing the local mechanical and the thermal fields in the vicinity
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of the notch tip. The solid horizontal line emanating from the origin represents the distance
plastic instability has extended from the notch tip during the duration of the shear loading
pulse. Figure l4(a-d) show the flow stress, equivalent plastic strain-rate, equivalent plastic
strain, and temperature as a function of distance ahead of the notch tip in the undeformed
configuration. Lowering the strain hardening exponent has a dramatic effect on both the
thermal and the mechanical fields. Although, the shape of the deformation and thermal
fields are nearly identical to those obtained for the 4340 VAR steel, the various contour
levels extend over a much larger distance from the notch. Also, the extension of the
plastic instability is increased dramatically as compared to 4340 VAR steel. An important
conclusion from these results is that if we want to develop material microstructures which
are more susceptible to the spread of plastic localization it is desirable to design material
microstructures with lower strain hardening characteristics and/or lower ultimate strengths.

(e) Effect of thermal softening parameter [Material Model (C)]. Figure l5(a-d) rep­
resent the contour plots showing the local mechanical and the thermal fields in the vicinity
of the notch tip. The solid horizontal line emanating from the origin represents the distance
the plastic instability has extended from the notch tip during the duration of the shear
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loading pulse. Figure 16(ad) show the flow stress, equivalent plastic strain-rate, equivalent
plastic strain, and temperature as a function of distance ahead of the notch tip in the
undeformed configuration. From these figures it can be seen that increasing the thermal
softening parameter fJ from 4.75 to 5.12 has a weak effect on the overall thermal and
deformation characteristics as compared to the Material Model (A) and Material Model
(B) cases. Also, the plastic instability propagation characteristics are quite similar to those
observed in 4340 VA R steel with the plastic instability extension being only slightly greater.

4.2. Extension history and speed ojpropagarion olplastic instability
The plastic instability extension history contains information about its dynamic charac­

teristics including the time of initiation. the time of arrest and the speed of propagation.
Figure 17 is a summary of the calculated length histories of propagating shear bands for
4340 VAR steel (heat conduction case), 4340 VAR steel (adiabatic case), Material Model
(A), Material Model (B) and Material Model (C). The curves show a dramatic increase in
length and speed of propagation of plastic instability for Material Model (Bl, which is
assigned a reduced strain hardening parameter as compared to 4340 VA R steel. On the
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other hand, the propagation distance as well as the speed of propagation is reduced
considerably for Material Model (A) with enhanced strain rate sensitivity. In addition, the
profiles indicate that the plastic instability propagation characteristics can be divided into
three distinct stages. The duration of stage I is approximately 375 ns after the arrival of the
shear wave at the notch plane. During this stage the plastic instability initiates and accel­
erates quickly to a near constant speed of propagation. This speed of propagation is highest
for Material Model (B) at 1200 mls and is lowest for Material Model (A) (estimated to be
less than 10 m/s). The speed of propagation for 4340 VAR steel is similar to that observed
in Material Model (C) at 250 m/s. During Stage II, which is approximately 125 ns in
duration, the speed of propagation of plastic instability decreases considerably to approxi­
mately 10 mls for all the material models considered in the present analysis. During Stage
III, the plastic instability again accelerates, but the rate of extension is considerably lower
in all material models as compared to those observed in Stage I. For all cases the numerical
simulations are terminated after 1000 ns of the arrival of the shear loading wave at the
notch plane because of the arrival of the unloading waves at the center of the specimen
from the lateral boundaries of the specimen. However, it must be noted that from Fig. 17
it is not very apparent that the shear band propagation characteristics for Material Model
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(A) has three distinct stages, At present this is understood not to be a characteristic of the
constitutive behavior of Material Model (A) but a consequence of the mesh employed in
the present investigation. The lOx 10 pm element size is unable to resolve the very small
extensions of plastic instability during Stages I and II for Material Model (A), as compared
to those observed in 4340 VAR steel, Material Model (B) and Material Model (C).

The solid line in Fig. 17 shows the effect of the mesh size on the aforementioned
computational results. Decreasing the size of the elements while keeping the same aspect
ratio in the near notch tip region leads to a slightly larger extension of the plastic instability.
The finer mesh (6 x 6 Itm), in an average sense, overestimates the extension of the shear
band by approximately 8% as compared to the 10 x 10 Itm mesh size.

4.3. Energy partition during initiation and propagation olplastic instabilitv
In order to characterize material resistance to the initiation and propagation of the

plastic shear instability the concept of a shear band toughness was recently proposed by
Grady (1994) and reiterated by Zhou ('f al. (1996b). A realistic understanding of the issue
calls for the study of the energy required for the initiation and propagation of plastic
instability. To this end, the generalized path-independent J-integral for dynamic conditions
is employed in the present analysis. The J-integral for dynamic loading conditions takes
the form (Moran and Shih, 1987)

f f [ O"ul all (aU I
) JJ = [(W+ L) dv" - Tul., ds] + xr~T, + p -~-';-UII -p-~- --.:; dA,

r- A ct- ct ct. 1

(62)

where A is the area of the contour rand

W = IF i

• r ll dEll-xIrr~dT,
Il ()

I au' au
L = -p----'

2 of at - (63)

Since attention is focused on the initiation of the plastic instability and J-integral is
path independent up to the time when a contour is intercepted by the localized band, only
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the result for the contour closest to the initial notch tip is plotted. Figure 18 shows the time
histories of J-integral for the material models employed in the present study. For each
material model, J-integral increases monotonically before the initiation of plastic instability
occurs. It is interesting to note that the J-integral values for the initiation and propagation
of plastic instability are highest for Material Model (A) for which the resistance to plastic
shear deformation is the highest. Moreover, Material Model (B) posses the lowest J-integral
values. This is consistent with the ease by which plastic instability initiated and propagated
in Material Model (B). Also, the J-integral values for Material Model (C) lies in between
the values obtained for 4340 VAR steel and Material Model (B). Again, this is consistent
with the plastic instability growth characteristics observed for Material Model (C). Also it
is to be noted that the J-integral values at the initiation of plastic instability, for the material
models considered in the present investigation, are approximately an order of magnitude
lower than those obtained for C-300 steel by Zhou et al. This mismatch is to be expccted
since, (a) the J-integral values reported by Zhou et al. are for the initiation of adiabatic shear
banding rather than the initiation of plastic shear instability. Since, it is well understood that
plastic shear instability is a precursor to adiabatic shear banding it is not surprising that
the energy required for the initiation of shear banding is higher than required for just the
initiation of plastic shear instability, and (b) the diameter of the prc-machined notch in the
specimens used in the experiments by Zhou et al. is 200.um as compared to 10 lim employed
in the present investigation. The much sharper notch used in the present computations is
expected to drastically lower the energy for the initiation of plastic instability.

In addition to energy absorption, cnergy partitioning provides another perspective on
the coupled thermo-mechanical processes during the propagation of plastic instability. The
work done by the imposed loading can be expressed as

f f'i1dS=dd r ~Poil'i1dV+ r r:DdV., tJv~ J, (64)

This identity specifies the balance between the rates at which mechanical work performed
through the specimen boundary, the stress power and the rate of change of kinetic energy
in the specimen. The stress power consists of an elastic part, a plastic part and a thermal
part, i.e.
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r r:DdV= r r:DcdV+ r r:DPdV+ r r::xtIdV.
Jv Jv Jv Jv

(65)

Integrating (64) in time yields

f'f f'odS= r~poo'odv+f' r r:DdV,
I) s Jv I) Jv

(66)

where P(t)=J~Jsf'odSdt is the accumulated boundary work at time t,
K( t) = Jv ~ po .0 d V is the total kinetic energy in the specimen and W( t) = J~ Jv r : D d V dt
is the accumulated stress work at time t.

Figure 19(a) and (b) show the evolution of the boundary work P, stress work W
(elastic, plastic and thermal), and kinetic energy K for Material Model (A) and Material
Model (B), respectively. The choice for these two materials is governed by their vastly
different shear instability growth characteristics. For both cases, the boundary work P,
which is the total work imparted to the specimen through the impact face increases linearly
upto I {IS, after which it remains essentially constant. The total stress work, W, and the
kinetic energy, K, also increases linearly upto the time the shear wave reaches the notch
plane, indicating that the energy stored in the specimen is primarily elastic since plastic
work is negligible during this part of the deformation. At approximately 0.95 {Is after
impact, K exceeds W, signifying that a part of the boundary work translates into the kinetic
energy. The changes in K and Ware always of opposite sign when no additional work is
imparted into the specimen through the boundary, indicating the interchange of kinetic
and elastic energies in the specimen. At approximately 1.3 {IS after impact, significant plastic
work commences in the near notch tip region for Material Model (B). The magnitude of
this plastic work is a small fraction of the elastic and kinetic energies, reflecting the relatively
small size of the specimen area that undergoes plastic deformation. For Material Model
(A), the plastic work remains essentially negligible throughout the duration of the loading.
This observation is consistent with the very small extension of plastic instability observed
for the case of Material Model (A). Also, during the deformation the thermal stress work
remains essentially zero.

It is to be noted that, although energy balance plots are helpful in providing insight
into the overall energy partitioning that occurs in the entire specimen during the plastic
instability evolution and progression, they do not provide much insight into the local energy
partitioning occurring in the region undergoing plastic shearing deformations. For example,
in the present simulations, after the initiation of the plastic instability (at approximately
1.3 {Is), the rate of increase of kinetic energy is positive up to 1.6 {IS, after which the rate
becomes negative. This decrease in kinetic energy cannot be associated with the growth
characteristic of the plastic instability, and actually occurs due to the unloading waves from
the lateral boundaries as well as the diffracted waves from the notch occupying a substantial
area of the specimen.

Figures 20(a-d) and 21 (a-d) show the local plastic dissipation contours in the process
zone, at time intervals 200, 500, 700 and 900 ns after the arrival of the shear loading pulse
at the notch plane. The two-dimensional nature of the propagating plastic shear instability
gives rise to the gradient in plastic dissipation observed along the notch plane. As observed
for Material Model (B) (Fig. 20(a», the plastic dissipation contours extend quite a distance
away from the notch tip before the initiation of the plastic instability. As the plastic
instability propagates (Fig. 20(b--d», the contours representing the plastic dissipation work
translate with the plastic instability, with the maximum in plastic dissipation occurring well
within the plastically localized band. Since, the location of maximum dissipation is closer
to the notch tip, the gradient in plastic dissipation are much larger behind the location of
maximum dissipation as compared to the gradients observed in front of it. The plastic
dissipation contours for Material Model (A) are shown in Fig. 21 (a-d). Unlike the plastic
dissipation contours observed for Material Model (B), the contours are concentrated very
close to the notch tip. This is consistent with the small growth of plastic instability in
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Fig. 19. Energy portioning as a function of time for, (al Material Model (A), and (b) Material
Model (B).

Material Model (A) as compared to that observed in Material Model (B). Also, as in the
case of Material Model (B), the plastic dissipation contours show a maximum well within
the plastic localized band. It must be noted that these observations are contrary to the
assumptions employed by Grady (1992) in his analytical analysis, where the assumption of
a band of zero dissipation was assumed behind the propagating shear band tip.
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